NON-PARAMETRIC
MODELING
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Nonparametric Methods

Parametric distribution models are restricted to
specific forms, which may not always be suitable;
for example, consider modelling a multimodal
distribution with a single, unimodal model.

Nonparametric approaches make few assumptions
about the overall shape of the distribution being
modelled.
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Histogramming

1 Histogram methods partition
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the data space into distinct
bins with widths A ; and count

the number of observations, n,,

in each bin.
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Often, the same width is used
for all bins, A; = A.

A acts as a smoothing
parameter.
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7 In a D-dimensional space, using

M bins in each dimension will
require MP bins!
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Kernel Density Estimation

Assume observations drawn If the volume V of R is
from a density p(x) and sufficiently small, p(x) is
consider a small region R approximately constant
containing x such that over R and

P = / p(x) dx. P ~ p(x)V

R
The probability that K out Thus K
of N observations lie inside p(x) = NV
R is Bin(K|N,P) and if N is
large
K~ NP.
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Kernel Density Estimation

Kernel Density Estimation: fix V, estimate K from K
the data. Let R be a hypercube centred on x and p(x) = NV
define the kernel function (Parzen window)

|1, [(xi —zni)/h| < 1/2, i=1,...,D,
k((x = xn)/h) = { 0, otherwise.

It follows that and hence
N X — X 1 N 1 X — X
(55 o5 2 (5
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Kernel Density Estimation

To avoid discontinuities in p(x), use a smooth kernel, e.g. a Gaussian

kw) > 0,
0 0.5 1
will WOI’k.) h acts as a smoother.
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Kernel Density Estimation

o Problem: if Vis fixed, there may be too few points
in some regions to get an accurate estimate.
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Nearest Neighbour Density Estimation

Nearest Neighbour
Density Estimation: fix K,
estimate V from the data.
Consider a hypersphere
centred on x and let it
grow to a volume V* that
includes K of the given N
data points. Then

K
NV*

p(x) =

K acts as a smoother.
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Nearest Neighbour Density Estimation

Problem: does not generate a proper density (for
example, integral is unbounded onRR”)

In practice, on finite domains, can normalize.

X

But makes strong assumption on tails [oc 1]
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Nonparametric Methods

Nonparametric models (not histograms) requires
storing and computing with the entire data set.

Parametric models, once fitted, are much more
efficient in terms of storage and computation.
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K-Nearest-Neighbours for Classification

1 Given a data set with N, data points from class C,

and >, Ny =N , we have

K
p(x) = 7
71 and correspondingly

0 Since p(Cr) = Ni,/N, Bayes’ theorem gives

PX|Cr)p(Ck) _ Ki
p(x) K

p(C|x) =
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K-Nearest-Neighbours for Classification
o
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K-Nearest-Neighbours for Classification

K acts as a smother

As N — oo, the error rate of the 1-nearest-
neighbour classifier is never more than twice the
optimal error (obtained from the true conditional class
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